Matura na poziomie podstawowym
Na egzaminie maturalnym sprawdza się, w jakim stopniu abiturient spełnia wymagania z matematyki w zakresie określonym podstawą programową kształcenia ogólnego dla IV etapu edukacyjnego. Poszczególne zadania zestawu egzaminacyjnego mogą też, w myśl zasady kumulatywności przyjętej w podstawie, odnosić się do wymagań przypisanych do etapów wcześniejszych (I, II oraz III). Podstawa programowa dzieli wymagania na szczegółowe i ogólne oraz wyodrębnia te, które powinny być zrealizowane na poziomie rozszerzonym. Wymagania szczegółowe odwołują się do ściśle określonych wiadomości i konkretnych umiejętności. Podstawowe znaczenie mają wymagania ogólne, jako syntetyczne ujęcie nadrzędnych celów kształcenia, stanowiące odpowiedź na pytanie, po co uczymy matematyki; informują, jak rozumieć podporządkowane im wymagania szczegółowe. Poziom opanowania wymagań szczegółowych jest tym wyższy, im lepiej służy osiągnięciu celów określonych w wymaganiach ogólnych. Egzamin maturalny z matematyki, jako przedmiotu obowiązkowego, jest zdawany na poziomie podstawowym.Arkusz egzaminacyjny składa się z trzech grup zadań.
I grupa zawiera zadania zamknięte. Dla każdego z tych zadań są podane cztery odpowiedzi, z których tylko jedna jest poprawna. Każde zadanie z tej grupy jest punktowane w skali 0–1. Zdający wskazuje właściwą odpowiedź, zaznaczając swoją decyzję na karcie odpowiedzi.
II grupa zawiera zadania otwarte krótkiej odpowiedzi. Zdający podaje krótkie uzasadnienie swojej odpowiedzi. Zadania z tej grupy punktowane są w skali 0–2.
III grupa zawiera zadania otwarte rozszerzonej odpowiedzi. Zadania te wymagają starannego zaplanowania strategii rozwiązania oraz przedstawienia sposobu rozumowania i są punktowane w skali 0–4, 0–5 albo 0–6.
W zadaniach krótkiej odpowiedzi zdający otrzymuje 1 lub 2 punkty za rozwiązanie, którego nie doprowadził do końca lub w którym popełnił pewne błędy. Określony jest jednak minimalny postęp, który w tym rozwiązaniu musi być osiągnięty, by otrzymać 1 punkt, oraz określone jest, jak zaawansowane powinno być rozwiązanie, by można było je ocenić na 2 punkty. W rozwiązaniach zadań rozszerzonej odpowiedzi zostaje wyróżniona najważniejsza faza, nazywana pokonaniem zasadniczych trudności zadania. Przyjęto zasadę, że za pokonanie zasadniczych trudności zadania przyznaje się co najmniej połowę punktów, jakie zdający otrzymałby za bezbłędne rozwiązanie tego zadania. Tak więc w zadaniu za 4 punkty, za pokonanie zasadniczych trudności, przyznajemy 2 lub 3 punkty (zależnie od zadania). W zadaniu za 5 punktów za tę fazę na ogół przyznajemy 3 punkty. W zadaniach za 6 punktów – na ogół 3 lub 4 punkty. Wyróżnienie w rozwiązaniu zadania rozszerzonej odpowiedzi fazy pokonania zasadniczych trudności zadania powoduje następnie wyróżnienie kilku innych faz. Przed pokonaniem zasadniczych trudności zadania wyróżniamy jeszcze jedną lub dwie fazy je poprzedzające: dokonanie niewielkiego postępu, który jednak jest konieczny dla rozwiązania zadania oraz dokonanie istotnego postępu w rozwiązaniu zadania. Zdający, który pokonał zasadnicze trudności zadania, mógł na tym poprzestać lub mógł kontynuować rozwiązanie. Wyróżniamy ważną kategorię rozwiązań, w których zdający pokonał zasadnicze trudności zadania i kontynuował rozwiązanie do końca, jednak w rozwiązaniu popełnił błędy niewpływające na poprawność całego rozumowania (na przykład nieistotne dla całego rozumowania błędy rachunkowe lub niektóre błędy nieuwagi). Analogicznie wyróżniamy kategorię pokonania zasadniczych trudności z nieistotnymi błędami. W każdym przypadku określana jest liczba punktów przyznawana za rozwiązania w każdej (lub niektórych) z powyższych kategorii. Należy podkreślić, że schemat oceniania rozwiązania zadania jest traktowany jako integralna część zadania; na ogół ten schemat oceniania uwzględnia wszystkie typowe sposoby rozwiązania i czasami również niektóre nietypowe.